as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 2 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 2-propanol, water and methanol (3:2:2) to a distance of about 7 cm, and air-dry the plate. Spray evenly 1,3-naphthalenediol TS on the plate, heat at 105°C for 5 minutes: one of the spot among the several spots obtained from the sample solution has the same color tone and *R*f value with the spot obtained from the standard solution. When further heat for more than 5 minutes, a blue spot is not observed at just lower than the spot mentioned above, or even appears it is only few.

2) Juku-jio—Sake 0.5 g of the fine cutting of Rehmannia Root with 5 mL of water, add 20 mL of methanol, shake for 10 minutes, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 2 mg of fructose for thin-layer chromatography in 1 mL of a mixture of water and methanol (1:1), and use this solution as the standard solution (1). Separately, dissolve 3 mg of manninotriose for thin-layer chromatography in 1 mL of a mixture of water and methanol (1:1), and use this solution as the standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 2 μ L each of the sample solution and the standard solutions (1) and (2) on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 2-propanol, water and methanol (3:2:2) to a distance of about 7 cm, and air-dry the plate. Spray evenly 1,3-naphthalenediol TS on the plate, heat at 105°C for 10 minutes: the principal spot obtained from the sample solution has the same color tone and Rf value with the spot obtained from the standard solution (1). Furthermore, one of the spot from the several spots obtained from the sample solution has the same color tone and Rf value with the blue spot obtained from the standard solution (2).

Purity (1) Heavy metals $\langle 1.07 \rangle$ —Proceed with 3.0 g of pulverized Rehmannia Root according to Method 3, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic $\langle 1.11 \rangle$ —Prepare the test solution with 0.40 g of pulverized Rehmannia Root according to Method 4, and perform the test (not more than 5 ppm).

Total ash $\langle 5.01 \rangle$ Not more than 6.0%.

Acid-insoluble ash <5.01> Not more than 2.5%.

Containers and storage Containers—Well-closed containers.

Rhubarb

Rhei Rhizoma

ダイオウ

Rhubarb is usually the rhizome of *Rheum palmatum* Linné, *Rheum tanguticum* Maximowicz, *Rheum officinale* Baillon, *Rheum coreanum* Nakai or their interspecific hybrids (*Polygonaceae*).

It contains not less than 0.25% of sennosides A (C₄₂H₃₈O₂₀: 862.74), calculated on the basis of dried material.

Description Ovoid, oblong-ovoid or cylindrical rhizome, often cut crosswise or longitudinally, 4 - 10 cm in diameter, 5 - 15 cm in length. In the case of Rhubarb without most part of cortex, the outer surface is flat and smooth, yellow-

brown to light brown in color, and sometimes exhibiting white, fine reticulations; thick and hard in texture. In the case of Rhubarb with cork layer, externally dark brown or reddish black, and with coarse wrinkles; rough and brittle in texture. The fractured surface of Rhubarb is not fibrous; transverse section grayish brown, light grayish brown or brown in color, having patterns of blackish brown tissue complicated with white and light brown tissues; near the cambium, the patterns often radiate, and in pith, consist of whirls of tissues radiated from the center of a small brown circle 1 - 3 mm in diameter and arranged in a ring or scattered irregularly.

Odor, characteristic; taste, slightly astringent and bitter; when chewed, gritty between the teeth, and coloring the saliva yellow.

Under a microscope <5.01>, the transverse section reveals mostly parenchyma cells; small abnormal cambium-rings scattered here and there in the pith; the cambium-rings produce phloem inside and xylem outside, accompanied with 2 to 4 rows of medullary rays containing brown-colored substances, and the rays run radiately from the center of the ring towards the outside forming whirls of tissues; parenchyma cells contain starch grains, brown-colored substances or crystal druses of calcium oxalate.

Identification To 1.0 g of pulverized Rhubarb add 10 mL of water, shake, then add 10 mL of diethyl ether, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of rhein for thin-layer chromatography in 10 mL of acetone, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography<2.03>. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 7 cm, and air-dry the plate: one of the spot among the several spots obtained from the sample solution has the same color tone and *R*f value with the yellow spot obtained from the standard solution, and the spot develops a red color on spraying sodium carbonate TS.

Purity (1) Heavy metals $\langle 1.07 \rangle$ —Proceed with 3.0 g of pulverized Rhubarb according to Method 3, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic $\langle 1.11 \rangle$ —Prepare the test solution with 0.40 g of pulverized Rhubarb according to Method 4, and perform the test (not more than 5 ppm).

(3) Raponticin—To 0.1 g of pulverized Rhubarb add exactly 10 mL of methanol, shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, dissolve 1 mg of raponticin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 10 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl formate, 2-butanon, water and formic acid (10:7:1:1) to a distance of about 7 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): the chromatogram obtained with the sample solution shows no spot having the same color tone and Rf value with the blue fluorescent spot obtained with the standard solution.

Loss on drying <5.01> Not more than 13.0% (6 hours).

Total ash <5.01> Not more than 13.0%.

Extract content <5.01> Dilute ethanol-soluble extract: not

less than 30.0%.

Assay Weigh accurately about 0.5 g of pulverized Rhubarb, add exactly 50 mL of a solution of sodium hydrogen carbonate (1 in 1000), shake for 30 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Sennoside A RS, (separately determine the water $\langle 2.48 \rangle$ by coulometric titration, using 10 mg) dissolve in a solution of sodium hydrogen carbonate (1 in 1000) to make exactly 50 mL. Pipet 5 mL of this solution, add a solution of sodium hydrogen carbonate (1 in 1000) to make exactly 20 mL and use this solution as the standard solution. Perform the test with exactly 10 μ L of the sample solution and standard solution as directed under Liquid Chromatography $\langle 2.01 \rangle$ according to the following conditions, and determine the peak areas, $A_{\rm T}$ and $A_{\rm S}$, of sennoside A in each solution.

Amount (mg) of sennoside A (C₄₂H₃₈O₂₀) = $M_{\rm S} \times A_{\rm T}/A_{\rm S} \times 1/4$

 $M_{\rm S}$: Amount (mg) of Sennoside A RS taken, calculated on the anhydrous basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 340 nm).

Column: A stainless steel column 4 – 6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter).

Column temperature: A constant temperature of about 40° C.

Mobile phase: A mixture of diluted acetic acid (100) (1 in 80) and acetonitrile (4:1).

Flow rate: Adjust so that the retention time of sennoside A is about 15 minutes.

System suitability—

System performance: Dissolve 1 mg each of Sennoside A RS and naringin for thin-layer chromatography in a solution of sodium hydrogen carbonate (1 in 1000) to make 10 mL. When the procedure is run with $20 \,\mu$ L of this solution under the above operating conditions, sennoside A and naringin are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of sennoside A is not more than 1.5%.

Containers and storage Containers-Well-closed containers.

Powdered Rhubarb

Rhei Rhizoma Pulveratum

ダイオウ末

Powdered Rhubarb is the powder of Rhubarb.

It contains not less than 0.25% of sennoside A (C₄₂H₃₈O₂₀: 862.74), calculated on the basis of dried materials.

Description Powdered Rhubarb occurs as a brown powder. It has a characteristic odor and a slightly astringent and bitter taste; is gritty between the teeth and colors the saliva yellow on chewing. Under a microscope $\langle 5.01 \rangle$, Powdered Rhubarb reveals starch grains, dark brown substances or druses of calcium oxalate, fragments of parenchyma cells containing them, and reticulate vessels. The starch grains are spherical, simple, or 2- to 4-compound grains. Simple grain, $3 - 18 \,\mu\text{m}$ in diameter, rarely $30 \,\mu\text{m}$; crystal druses of calcium oxalate, $30 - 60 \,\mu\text{m}$ in diameter, sometimes exceeding $100 \,\mu\text{m}$.

Identification To 1.0 g of Powdered Rhubarb add 10 mL of water, shake, then add 10 mL of diethyl ether, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of rhein for thin-layer chromatography in 10 mL of acetone, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 7 cm, and air-dry the plate: one of the spot among the several spots obtained from the sample solution has the same color tone and *R*f value with the yellow spot obtained from the standard solution, and the spot develops a red color on spraying sodium carbonate TS.

Purity (1) Heavy metals $\langle 1.07 \rangle$ —Proceed with 3.0 g of Powdered Rhubarb according to Method 3, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic $\langle 1.11 \rangle$ —Prepare the test solution with 0.40 g of Powdered Rhubarb according to Method 4, and perform the test (not more than 5 ppm).

(3) Raponticin—To 0.1 g of Powdered Rhubarb add exactly 10 mL of methanol, shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, dissolve 1 mg of raponticin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 10 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl formate, 2-butanon, water and formic acid (10:7:1:1) to a distance of about 7 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): the chromatogram obtained with the sample solution shows no spot having the same color tone and Rf value with the blue fluorescent spot obtained with the standard solution.

Loss on drying <5.01> Not more than 13.0% (6 hours).

Total ash $\langle 5.01 \rangle$ Not more than 13.0%.

Acid-insoluble ash <5.01> Not more than 2.0%.

Extract content <5.01> Dilute ethanol-soluble extract: not less than 30.0%.

Assay Weigh accurately about 0.5 g of Powdered Rhubarb, add exactly 50 mL of a solution of sodium hydrogen carbonate (1 in 1000), shake for 30 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Sennoside A RS, (separately determine the water $\langle 2.48 \rangle$ by coulometric titration, using 10 mg), dissolve in a solution of sodium hydrogen carbonate (1 in 1000) to make exactly 50 mL. Pipet 5 mL of this solution, add a solution of sodium hydrogen carbonate (1 in 1000) to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly $10 \,\mu$ L each of the sample solution and standard solution as directed under Liquid Chromatography $\langle 2.01 \rangle$ according to the following conditions, and determine the peak areas, $A_{\rm T}$ and $A_{\rm S}$, of senno-